Algorithms for Generalized Clusterwise Linear Regression
نویسندگان
چکیده
منابع مشابه
Algorithms for Generalized Cluster-wise Linear Regression
Cluster-wise linear regression (CLR), a clustering problem intertwined with regression, is to find clusters of entities such that the overall sum of squared errors from regressions performed over these clusters is minimized, where each cluster may have different variances. We generalize the CLR problem by allowing each entity to have more than one observation, and refer to it as generalized CLR...
متن کاملRobust clusterwise linear regression through trimming
The presence of clusters in a data set is sometimes due to the existence of certain relations among the measured variables which vary depending on some hidden factors. In these cases, observations could be grouped in a natural way around linear and nonlinear structures and, thus, the problem of doing robust clustering around linear affine subspaces has recently been tackled through the minimiza...
متن کاملFuzzy clusterwise quasi-likelihood generalized linear models
The quasi-likelihood method has emerged as a useful approach to the parameter estimation of generalized linear models (GLM) in circumstances where there is insufficient distributional information to construct a likelihood function. Despite its flexibility, the quasi-likelihood approach to GLM is currently designed for an aggregate-sample analysis based on the assumption that the entire sample o...
متن کاملFuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable
The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The ...
متن کاملClusterwise Regression using Dirichlet Mixtures
The article describes a method of estimating nonparametric regression function through Bayesian clustering. The basic working assumption in the underlying method is that the population is a union of several hidden subpopulations in each of which a different linear regression is in force and the overall nonlinear regression function arises as a result of superposition of these linear regression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: INFORMS Journal on Computing
سال: 2017
ISSN: 1091-9856,1526-5528
DOI: 10.1287/ijoc.2016.0729